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Crystallographic Calculations on the High-Speed Digital Computer SWAC 
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The high-speed digital computer SWAC has been used extensively for calculations needed in the 
determination and refinement of crystal structures. Programs for calculation of structure factors, 
normal Fourier summations, differential Fourier summations and least-squares refinement are 
described briefly, and some practical experience with them is discussed. In general these programs 
may be used with only minor specified changes for almost any crystal of any symmetry. All pro- 
grams include provision for use of individual anisotropic atomic temperature factors. A few other 
programs for more trivial, but nevertheless tedious, caIculations are also described. 

Introduction 

Several applications of high-speed digital computers 
to the determination and refinement of crystal struc- 
tares have recently been reported (Ordway, 1952; 
Bennett & Kendrew, 1952; Ahmed & Cruickshank, 
1953; Mayer & Trueblood, 1953; Mayer, 1953; Thomp- 
son, Caminer, Fantl, Wright & King, 1954; Cochran 
& Douglas, 1955). The last of these reports is concerned 
with attempts at direct determination of structures 
through systematic examination of sign relationships; 
all of the others deal with the sort of calculations which 
arise during the refinement stages. Almost all of these 
reported procedures suffer from certain limitations of 
generality; for example, most were designed for 
particular centrosymmetric space groups, and exten- 
sion to other space groups, particularly non-centro- 
symmetric ones, involved additional complications 
and considerably more coding and computing time. 
In addition, determination and refinement of indivi- 
dual anisotropic atomic temperature-factor parameters 
have not generally been considered. During the past 
two years we have written and applied programs for 
almost all of the calculations normally needed in 
refinement procedures for any space group, with 
allowance, when desired, for individual anisotropic 
atomic temperature factors. These procedures have 
been applied to data from more than thir ty different 
crystalline substances, representing at least fifteen 
different space groups, including triclinic, monoclinic, 
orthorhombic, tetragonal, hexagonal and cubic sym- 
metry. The present report consists of descriptions of 
the organization of the different types of calculations, 
together with some general comments on desirable 
features of routines for such calculations. 

Notat ion 

The following special notation will be used: 

* Present address: National Bureau  of Standards ,  Washing- 
ton 25, D.C., U.S.A. 

Subscripts 
g -  one of the 

i - -  
j - -  
m -  
y - -  

crystallographically independent 
atoms in an arbitrary asymmetric unit. 
one of the direct axes or reciprocal axes. 
any atom in the unit cell. 
an atom equivalent by symmetry to one of type v. 
the (arbitrarily chosen) representative atom of a 
given set of atoms related by symmetry in a 
least-squares refinement. 

Other symbols 
j B ~ , -  the coefficient of h~h~. in the expression for a 

general anisotropic temperature factor for 
atom j. 

flj - -  the exponent in the temperature factor for 
atom j. 

q~j - -  ,X h~x~# 
i 

L - -  the Lorentz-polarization factor. 
Sk - -  the scale factor in the /cth stage of a Fourier 

summation. 
smi - -  the sign of xiv9 in the ruth equivalent position. 
T i - -  Tunell correction for a plane on a Weissenberg 

photograph. 
~mi~'-  sign of vgBii, for the ruth equivalent position. 

The computer  

The :National Bureau of Standards Western Automatic 
Computer (SWAC) (Huskey, Thorensen, Ambrosio & 
Y0well, 1953) is a f0ur-address machine with a high- 
speed electrostatic memory of the Williams-tube type 
which can hold 256 36-digit binary numbers ('words') 
and a magnetic drum which at present can store 8192 
such numbers. All of our routines utilize the drum for 
storage of subroutines, tables, data and intermediate 
answers. For numbers in the high-speed memory, 
addition and subtraction are performed in 64 mierosec., 
multiplication in 368 microsec., and division in a few 
milliseconds. Transfer of information to or from the 
drum requires 17 millisee, for each group of 64 or 
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fewer words; consequently such transfers are mini- 
mized. Standard IBM cards are used for input into 
the SWAC with a modified collator and output from 
the SWAC through a modified reproducing punch. 
The use of punched cards for input and output is an 
extremely convenient feature since it greatly facilitates 
the preparation, checking and processing of data and 
answers. Direct output to an IBM 402 tabulator may 
also be used, with or without simultaneous punched- 
card output. 

Information may be input in either decimal or 
binary form; if the former method is used, a sub- 
routine for conversion to binary form within the 
computer must be incorporated in the program. The 
time used for conversion is a negligible fraction of the 
total input time. Binary input (with 10 words per 
card) is normally preferred for information which is 
to be used more than once because it is more economi- 
cal of cards, and hence of input time. Thus all routines 
are converted tb binary cards and used in binary form 
thereafter, and any data which will be used repeatedly 
in a calculation, such as observed structure-factor 
amplitudes with their associated indices, are normally 
converted to binary form. Input and output operations 
are kept to a minimum because they are slow relative 
to the speed of operations within the machine. The 
effective time for binary card input is about 25 milllsec. 
per word. In most of our calculations, 10-18 decimal 
answers, with 2-6 decimal digits each, are punched on 
each answer card; the effective time for output is of 
the order of 50-100 millisec, for each answer. 

General  d i s cuss ion  

In all of our coding, flexibility of the final codes has 
been given primary emphasis. All of our basic codes 
may be used for any space group and for any number 
of atoms likely to be encountered at the present stage 
of crystal-structure analysis. Initially, separate pro- 
grams were written for structure-factor calculations, 
Fourier summations, and least-squares refinement; 
the first two of these have now been combined with 
a routine for differential Fourier syntheses into one 
master routine which consists of approximately 1200 
commands. Only about 50 of these commands, which 
occur on eight specified 'variable cards' in the routine, 
need be changed whenever a new crystal is being 
studied, and these changes are made in a specified 
manner which depends upon the lattice constants, the 
symmetry, the number of independent atoms and other 
similar unique features of the particular substance. 
The least-squares program, which also includes a 
structure-factor calculation, consists of about 700 
commands, of which about 20 are normally varied 
from one crystal to the next. For simplicity in the 
present discussion each of these types of calculation 
will be considered separately. 

Because our general programs are so flexible they 

do not perform the calculations as rapidly or con- 
veniently as would sometimes be possible with specific 
programs written for particular space groups. This is 
especially true for three-dimensional Fourier summa- 
tions, since the general routine requires input for each 
structure factor except those related by Friedel's law. 
Consequently, appropriate modifications, which in- 
volved the alteration of about 60 commands, have 
been made in the Fourier routine in order to create 
a routine specific for the common space group P212121. 
This routine, which requires only the unique reflections 
to be input, is about 25% faster than the general 
routine, and also far more convenient, since it obviates 
the need for reproduction and sorting of cards cor- 
responding to the non-unique reflections. This latter 
advantage is important in work with crystals with large 
asymmetric units, such as the vitamin B12 fragment 
(Hodgkin, Pickworth, Robertson, White, Trueblood & 
Prosen, 1955) for which there are more than 3300 
independent observed reflections. No appreciable 
further gain in computing time can be made as long as 
card input and output are used, since these operations 
now consume nearly one-hall of the total elapsed time 
during a Fourier summation. Because there can be so 
little gain in computing time, it is questionable whether 
it is worthwhile to write special codes for more than 
the most common space groups. 

One advantage of general routines, with specified 
variable commands, is the simplification of code- 
checking; once the initial routine has been code- 
checked logical errors are rare: since they can arise 
only from failure of the coder to write the variable 
commands correctly. Several different procedures are 
employed routinely to check on the calculations: 
(a) Hand-calculation is used whenever feasible to check 
specific points or stages in a complex problem. (b) In 
all Fourier calculations, summations are made over a 
slightly larger volume of the unit cell than corresponds 
to the asymmetric unit; this permits a check on the 
symmetry. (c) Because of the possibility of loss of a 
digit in transfer to or from the drum, all such transfers 
of commands and data are accompanied at least by 
a memory-sum check, which compares the sum of all 
information transferred before and after the transfer 
and repeats the process if an exact check is not ob- 
tained. (d) A variety of routine checks is made; for 
example, to verify that  all of the atomic parameters 
have been prepared correctly, read correctly by the 
machine and identified with the proper atoms, all of 
the drum channels on which these parameters are 
stored may be punched out and proof-read before a 
complex calculation is undertaken. Because of the 
persistence of human errors as well as the possibility 
of occasional machine errors, such double-checks are 
highly desirable before a calculation which will require 
many hours of computer time. Similarly, whenever any 
calculation is interrupted (all routines are arranged so 
that  the calculations need not be continuous) it is 
standard practice to repeat a small portion of that  
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Initial input (data): 

Table 1. Flow diagram for structure-factor calculation 

Unit-cell dimensions 
Scale factor, k, for Fo 
Form-factor tables for each type of 

atom 
Total number of unique atoms 

L°ad r°u  °sand I 
initial input (data) > Input Fo(h x, h~, h~) 

Convert desired output 
to decimal and punch 

Calculate A u, B s, IFel, cosa, s ina,  ] 
I 

kFo, kAo, kBo, ~kiP[, /kA, /kB I< Yes 

>1 Calculate sin0/~ ] 

For each unique atom: 
Position parameters 
Temperature-factor parameters 
Code words for generation of para- 

meters of equivalent atoms 
Address of form-factor table to be 

used 

Look up each corre- ] 
-> spondingf~ and store 

Modify atom No. > I 

Has last atom's contribution 
been calculated ? 

I Repeat last three steps for I 
non-unique positions ~- 

Calculate t~mperature factor 
for ato~n j, unique position 

I Form 2 ~ h g x g  i I 
g 

Calculate and accumulate contri- 
butions of atom j, unique position, 

to A and B 

already done to insure that  the machine is performing 
identically. 

In actual practice random machine errors have 
vitiated only a very small fraction of our computing 
time, probably no more than 1 or 2%. When there 
are machine difficulties it is almost always manifest 
at once in a 'blow-up' of the calculation; that  is, a 
command is altered in such a way that  the normal 
cycle of the calculation is interrupted and the machine 
then proceeds in a manner obviously unrelated to the 
problem at hand. 

S t ruc ture - fac tor  calculat ions  

Structure factors, defined in equations (1)-(4), are 
calculated by a routine which presupposes no sym- 
metry and which, consequently, is suitable for any 
space group after specified modifications in the few 
variable cards. 

F(hl, h2, h3) = A(hl, h2, h3)+iB(hl, h2, h3) . (1) 

A = ,Zf~ exp [ - ~ ( h  1, h2, h3)] cos 2 ~ i .  (2) 
J 

B = ~ ' f j  exp [-flj(h x, h~, h3) ] sin 2 ~ .  (3) 
i 

The exponential term in these equations is the tem- 
perature factor for atom j, which may be either iso- 
tropic (one parameter for each atom) or anisotropic 
(as many as six parameters for each atom). In the 
latter case flj is given by the general expression 

÷ .rB19hlh, + jB~3h2h3 ÷ iB31hsh1. (4) 

The general organization of the calculation is in- 
dicated in the accompanying flow diagram (Table 1). 

Each plane is calculated independently, in contrast 
with some reported methods (Ahmed & Cruickshank, 
1953) in which the contribution of one atom to many 
planes is calculated at one time. The latter method 
can be faster but has the disadvantage that  the cal- 
culation cannot usually be interrupted, either in- 
tentionally or because of machine failure, until all 
contributions to all planes have been summed. In our 
procedure, each answer is punched as soon as it is 
obtained and the calculation may be interrupted at 
any stage. 

Trials of polynomials to represent form factors 
(Mayer, 1953) showed that  they are not significantly 
faster than table searching and are appreciably less 
convenient unless the problem of storage room is 
critical. Tables of form factors for each type of atom 
are stored with a tabular interval of 0.006 in sin 0/2 
and values are selected from these tables without 
interpolation. The maximum error made thus cor- 
responds to an error in sin 0/2 of ±0-003, or about 1% 
in a form factor. When a new type of atom, or a mod- 
ified form factor, is encountered, less than one hour 
is needed to prepare the needed table, punch it deci- 
mally, and convert it for use in the routine. Normally 
storage room is provided for five different f-tables, 
corresponding to five chemically distinct types of 
atoms; to date we have needed no more, but simple 
modifications would permit extending this storage 
space almost indefinitely. 

With a routine written for P1 it is of course neces- 
sary to consider explicitly all of the atoms in the unit 
cell. As indicated in the flow diagram, special code 
words are utilized for generation of the parameters of 
the atoms equivalent to the arbitrarily chosen 'unique' 
atoms in the asymmetric unit. These code words are 
examined by a sequence of commands which suc- 
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Table 2. Flow diagram for first and second stages of Fourier summations 

Input data 
Ao (hp hg., ha), 
Bo (hp h~, hs) 

Load routines I 
in HSM and drum 

Form C 2 terms and sum: 
X (Bo cos 2~thlx 1 
-- Ao sin 2ZhlXl) 

(Directly from structure-factor calculation) 

(Decimal) I [ > Convert to 
binary 

Form C 1 terms and sum: 
27 (Ao cos 2~rhlx 1 
+ Bo sin 2XrhlXl) 

3D 
Punch D1, Dg. < 

(constant xl, ha) 

I Convert Q (xlxz) + - - - -  
to decimal and punch 2 D 

changed ? 

! 

Form D~. terms from stored I 
C 1 and C 2 and sum: <---- I 27 (C~ cos 2~rhgx 2 

-- C 1 sin 2Jrhexg.) 

No 

Yes 

I Has h 2 
) changed ? 
) 

Yes 

Store C 1, C~. on drum [ 
+- -  (constant h2, ha) 

Form D 1 terms from stored 
C 1 and C 2, and sum: 

27 (C 1 cos 2~zh~xg. 
"4- C9. sin 2~h2x2) 

cessively doubles them and tests for 'overflow'. Thus 
if a binary digit is placed in the extreme left (most 
significant) position of a word, doubling of that  word 
moves the digit out of the word to the left, a situation 
which SWAC can recognize as overflow and which 
can cause the machine to execute further commands 
which it would not obey in the absence of overflow. 
These commands may say, for example, 'replace x 1 by 
- x  1' or 'add 0.5 to x2'; one can thus, by the presence 
or absence of digits in appropriate positions, readily 
represent all possible relations among position para- 
meters which may result from the various crystallo- 
graphic symmetry operations. When a center of sym- 
metry is present, the routine automatically bypasses 
the summation indicated by equation (3). 

Isotropic temperature factors do not vary with 
symmetry operations; the way in which general aniso- 
tropic temperature factors transform for monoclinic 
substances has been reported (Rollett & Davies, 1955) 
and we have worked out the corresponding transforma- 
tions for all other possible symmetry operations 
(Trueblood, 1956). For all but hexagonal and trigonal 
crystals, these transformations may be represented by 
fairly simple and readily specified code words which 
are already normally included in our routines; the 
transformations for temperature factors in the hex- 
agonal system are somewhat more complex and those 
for trigonal crystals are almost hopelessly so for this 
sort of automatic generation. Our current practice with 
crystals of these symmetries is to include with the 
input data the parameters of each atom in the unit 
cell related to the arbitrary 'unique' atoms by any 
axis of order 3 or 6. The other symmetry operations 
needed are then represented in the usual fashion by 
code words. 

Structure-factor calculations have been performed 
for crystals with from 3 to more than 100 atoms in the 
asymmetric unit; in the latter case, individual iso- 

tropic temperature factors were used. The routine can 
normally accommodate about 200 different atoms if 
each is permitted to be generally anisotropic, and 
about 1000 if each is isotropic, as of course would be 
assumed in any practical calculation on such a scale. 
The times required for the calculations for one plane 
in the crystals so far studied have varied between 
about 2 and 7 sec., of which about 1 sec. is required 
to punch the decimal answer card. The normal output 
consists of 

hl, h2, h3, ]Fol, ]Fcl, AIFI, Ao, Bo, AA,  AB, cos~ 

and sin 0/~t. 

Summations of IFo[, [Fc[ and/ I  IF[ are automatic when 
the answers are tabulated, providing an approximate 
check of the scale factor and the reliability index. 

Fourier  s u m m a t i o n s  

In the general form of the Fourier routine, summations 
are made in three successive stages according to equa- 
tion (5) as expanded in equations (6)-(10). In these 
equations it is assumed that  the first summation index 
is hi, the second h 2, and the third h 3. The accompanying 
flow diagram (Table 2) describes the process for the 
first two stages. 

F(0,  0, 0) co C O  C O  

× cos 2ze[hlxl+h~x~+hzXs-a(h 1, h2, h3) ] . (5) 

Summation over hi gives a function C(xl, h2, hs) 
which may for our purpose most conveniently be 
considered as the sum of two functions, C1 and C2: 

C O  

CI(Zl,  h2, h3) = S 1 ~ {F(h 1, h 2, ha) ] (cos a cos 2 g h l X  1 
- - -OO 

+sin ~ sin 27rhlxl), (6) 
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Oo 

C~.(x 1, h~, ha) = S 1 ~ IF(hi, h2, hz)l (sin ~ cos 2~hlx  1 
.,--oo 

- c o s  ~ sin 2r~hlxl).  (7) 

The scale factor S 1 is so chosen that  the sums are on 
an appropriate scale. These summations are performed 
within the high-speed memory and the answers are 
stored on the drum whenever hg. changes. When h a 
changes, the answers from the first stage are used in 
the calculation of the second stage, yielding a function 
D(x 1, x,, ha) which is again conveniently considered 
as the sum of two functions D 1 and D~: 

c o  

DI(X 1, xg., ha) = S~. ~ (C 1 cos 2~h2x~. + C9. sin 2~h~x~) , (8) 
----co 

CO 

D,(x  1, x~, ha) = S ,  Z ( C2 cos 2reh~x~-C1 sin 2uh~x2) . (9) 

The advantage of expansions in this form is that  
equations (6) and (8) are exactly parallel in form, as 
are also equations (7) and (9); thus essentially the 
same routine may be used for Stage 1 as for Stage 2. 

In calculation of a two-dimensional Fourier sum- 
mation, only D 1 is evaluated and it is converted to 
decimal form and punched directly, since Dl(x  1, x,, O) 
is identically (with proper scale factors) the two- 
dimensional electron density. 

In  evaluation of a three-dimensional summation, 
D1 and D2 are punched in binary form with appropriate 
decimal identification indices, sorted if necessary, and 
then used directly as input in the final summation 

CO 

E(x  D x~, xa) = Sa.,~,(D1 cos 2~haxa + D~ sin 27ehaxa) . (10) 
0 

Since equation (10) is again precisely parallel to equa- 
tions (6) and (8) the routine for performing the sum- 
mation is very nearly identical with those for calcula- 
tion of C 1 and D 1. 

The final answers are punched decimally; sixteen 
values of the electron density, corresponding to con- 
stant x 1 and x~ and sixteen values of x a, are punched 
on each card. The scale factors S 1, S~ and S a are 
chosen so that  the punched answers are some con- 
venient multiple, usually 100 times, the electron 
density in e.A -a. The precise relation of ~ and E is 

2 G H  
~(x 1, x~, xa) = K +  V S 1 s ~ s E ( X l ,  x~, xa) , (11) 

in which K is F(0, 0, O)/V if this term is omitted in 
the first stage of the summation (as is common), and 
zero otherwise; G is the ratio of the data on an absolute 
scale to the actual input  data;  and H is a factor arising 
in the conversion of binary answers to decimal form. 
Since the initial answers may  be tabulated while the 
computation of the remainder of the asymmetric unit  
is taking place, the printing of the entire summation 
may be completed within a few minutes after a com- 
putation is finished. 

Input  into the Fourier routine may be in binary 
form directly from a structure-factor calculation when 
the combined master routine is used, with no inter° 
mediate punchout, or from the usual decimal structure- 
factor answer cards, which contain all the requisite 
data needed for either an observed Fourier or a dif- 
ference Fourier. The input data are arranged in such 
order that  the index summed over first varies most 
rapidly, that  summed next varies second most rapidly, 
and that  summed third varies least rapidly. With 
the exception of the special routine written for P212121, 
which will serve with minor modification for any 
crystal of the same point group, every summation 
requires input of A and B for every plane except those 
related by Friedel's law. Consequently, binary input 
directly from the structure-factor calculation, although 
very convenient, is not the most economical of SWAC 
computing time because structure factors must be 
calculated explicitly for all of these planes. However, 
it is not as inefficient as might at first be supposed 
because, at most, only the structure factors of the 
independent reflections need be punched, and the 
punching time is, as noted, an appreciable fraction of 
the total computing time. In  actual practice two- 
dimensional Fourier projections are always calculated 
with input directly from the structure-factor calcula- 
tion; on the average between 15 and 20 rain. is re- 
quired for an entire structure-factor calculation and 
two-dimensional summation, including all desired in- 
put and output. 

When decimal Fourier input is to be used, the ap- 
propriate cards for the non-unique planes may be 
prepared from those for the unique planes by simple 
reproduction, with appropriate sign changes as needed. 
This operation is convenient for most space groups, 
although it becomes excessively complex and liable 
to error for some, for example certain hexagonal ones 
for which equivalent indices cannot readily be iden- 
tified with a card sorter. In  such cases, it is usually 
safer and more efficient to calculate all structure fac- 
tors with the computer, and use direct binary input 
into the Fourier summa¢ion. 

The variable cards permit  specification of the 
starting point of the summation, which may be any- 
where in the unit  cell, and the desired number of 
intervals along each axis. The interval is normally 
1/60th; however one may  also by appropriate specifica- 
tion on one of the variable cards calculate at intervals 

of 1/120th. Because the trigonometric functions needed 
always involve arguments which are integral multiples 
of a particular value, it is most convenient and 
economical of t ime to store tables of these values; 
in the structure-factor routine, on the other hand,  
because the arguments cannot be readily specified in 
advance if high precision is desired, a power series is 
used. 

On the variable cards one may also specify the scale 
factors, the type of input to be used, whether the sum- 
mation is two- or three-dimensional, and whether 
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certain ~f the summation terms represented by equa- 
tions (6)-(9) should be omitted. In certain space 
groups some of these terms may be omitted with a 
resultant saving of time. When the input is directly 
from a structure-factor calculation it is also possible 
to specify whether one wishes an observed, a calcu- 
lated, or a difference Fourier summation. 

The time required for a three-dimensional summa- 
tion is chiefly a function of the quantity of punched 
card output, with only minor dependence on the 
volume of initial input. The time required for the third 
stage of the calculation is approximately one hour for 
each eighth of the unit cell when the calculation is 
made at intervals of 1/60th; the time for the combined 
first and second stages, although less easy to specify 
precisely, usually is between one-third and two-thirds 
of that  for the third pass. The longest summation we 
have yet made involved about 1800 independent re- 
flections summed at intervals of 1/120th along one 
axis and 1/60th along each of the other two throughout 
one-fourth of the unit cell. The total time required was 
slightly more than 6 hr. 

Ordinary Patterson functions are of course calcu- 
lated with this routine, with appropriate bypassing of 
unneeded terms in equations (6)-(9). We plan to write 
a routine for calculation of sharpened Patterson func- 
tions, with the peak at the origin removed; the initial 
input will consist merely of the pack of binary cards 
containing Fo, h 1, h 2 and h 3 which is already used for 
structure-factor input. 

Differential  Fourier  s u m m a t i o n s  

Differential Fourier syntheses (Booth, 1946) provide 
a particularly efficient method for refinement of atomic 
coordinates. Their calculation involves little more than 
a structure-factor calculation, with formation of cer- 
tain additional products for each reflection, and ac- 
cumulation of these separately for each atom. These 
products are those needed in the calculation of the 
electron density and its three first derivatives and six 
second derivatives at the position of each atom in the 
asymmetric unit; they are given by equations such 
as (12)-(14) : 

1 
@j(xl, x2, x3) = ~ ~ (A cos ~ j+B sin ~j), (12) 

2z 
~gJ/~xis = V ' ~ 3  h i ( - A  sin ~ j+B cos ~j), (13) 

4y~ 2 
~2@j/~xij~xi, i = - ~ ~ hihi,(A cos ~ j+B sin %.). (14) 

3 

The computation of these terms does not materially 
increase the complexity of the calculation beyond that  
required for the structure factors alone, because most 
of the needed individual terms have already been 
calculated in the structure-factor routine. The chief 
additional needs are to provide certain additional 

product and accumulation commands, and to perform 
the calculation for the non-unique as well as the unique 
reflections. The master routine is so arranged that  a 
differential synthesis, a normal Fourier synthesis, or 
both, may be computed in conjunction with a struc- 
ture-factor calculation. The sums represented by equa- 
tions (12)-(14) are punched out at regular intervals 
as the calculation progresses so that  it is not necessary 
to start over from the beginning if the calculation is 
interrupted for any reason. 

In practice, both the observed and calculated elec- 
tron densities, and the nine derivatives of each, are 
evaluated. The calculation begins with the evaluation 
of the structure factor, which is punched out if desired. 
Then the products and sums indicated in equations 
(12)-(14) are formed and the twenty sums for each 
atom in the asymmetric unit are accumulated pro- 
gressively. At the conclusion of the summation, a sub- 
routine solves for the shifts corresponding to both the 
observed and calculated syntheses, takes their dif- 
ference for each parameter, and multiplies these dif- 
ferences by the parameter of the 'n-shift rule' (Shoe- 
maker, Donohue, Schomaker & Corey, 1950), which 
is specified on a variable card. The resulting corrected 
shifts are next added to the initial parameters on the 
appropriate drum channels, and finally the revised 
parameters are punched for record. A new cycle of the 
calculation may then be started if desired. 

The time involved in a differential synthesis can 
best be expressed relative to that  required for a struc- 
ture-factor calculation alone; even then it is a function 
of the relative numbers of unique and non-unique 
reflections, not counting those related by Friedel's law. 
The calculations for the non-unique reflections involve 
no punch output and consequently are significantly 
faster than those for the unique reflections when the 
structure factors are punched. For orthorhombic space 
groups, the combined structure-factor calculation and 
differential synthesis usually takes a little more than 
twice as long as the structure-factor calculation alone. 
For a typical hexagonal crystal, lithium perchlorate 
trihydrate (Prosen & Trueblood, 1956), the combined 
calculation takes between three and four times as long 
as the structure-factor calculation alone; there are 
about seven times as many non-unique as unique 
reflections. 

We do not yet use differential syntheses for semi- 
automatic analytical refinement of temperature fac- 
tors; this is done by least-squares methods. Differential 
syntheses do, however, provide excellent criteria for 
convergence, since, when all of the position and tem- 
perature factor (shape) parameters for an atom are 
correct, the difference density and its first and second 
derivatives should vanish. 

Leas t - squares  re f inement  

Refinement of the scale factor and of atomic-position 
and temperature-factor parameters by least squares 
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is a particularly powerful procedure and has the 
advantage that  it utilizes only the independent reflec- 
tions. Just  as with a differential synthesis, most of 
the terms needed in the calculation are those normally 
evaluated in a structure-factor calculation; it is 
necessary only to add appropriate accumulation and 
product commands, and of course to solve the normal 
equations which result. 

The equations of condition for the least-squares 
refinement are of the form 

~IFI ] 
+-~-Ak = I/W.AIFI. (15) 

There are as many of these equations as there are 
unique reflections. The derivatives which occur in 
these observational equations, and in the normal 
equations calculated from them, have the following 
form : 

~lF] OA ~B 
cos a +  ~ivg sin ~ ,  (16) 

~Xivg 

with an exactly analogous equation for ~lFI/~gBii,. 
It  is not convenient to write general equations for the 
individual derivatives which are valid for any space 
group because the relation of the temperature factors 
of symmetry-equivalent atoms becomes very complex 
for certain space groups of high symmetry. On the 
other hand when the symmetry is orthorhombic or 
lower, the following equations suffice: 

OA 

~Xivg 
OA 

- -2r~hifg.,~, Smi exp [--fl,~] sin 2~q0mg, (17) 
m 

Ovg Bii, 
f~,hihi,.~Y, "t'mii' exp [--tim.,,] COS 2~rq~,~. (18) 

m 

Similar expressions occur for the derivatives of B. 
Since ~mi and Vmii" are merely signs, they can con- 
veniently be represented in the code words used for 
generation of the parameters of the atoms equivalent 
by symmetry to those in the asymmetric unit. 

The equations of condition are reduced to the normal 
equations, equal in number to the number of inde- 
pendent parameters to be refined. In principle, these 
normal equations involve the sums over all hi of the 
squares and products with one another of all of the 
derivatives of equation (15). It is customary in three. 
dimensional least-squares refinement of atomic posi- 
tions in orthogonal crystals to assume that  the matrix 
of the coefficients of the unknown terms is diagonal, 
that  is, that  the only terms significantly different from 
zero in the normal equations are those involving the 
squares of derivatives. This assumption, which becomes 
less reasonable if the axial angles depart significantly 
from 90 ° , means that only as many sums as there are 
independent parameters need be accumulated; for 
example with N atoms in general positions, one need 

only accumulate the 3N square terms, rather than the 
3N(3N-1) /2  products which are needed if an exact 
solution is to be reached. With a large unit cell this 
represents an enormous saving in computational effort. 
On the other hand, for non-orthogonal crystals, cross- 
terms between the different parameters of a given atom 
may become significant. Since it is possible to calculate 
some cross-terms without an appreciable increase in 
computing time, the routine is written to calculate all 
of the cross-terms among the three position parameters 
for each atom and all of the cross-terms among the six 
temperature-factor parameters for each atom; no 
cross-terms involving interaction of position para- 
meters with temperature-factor parameters, or inter- 
action of any of the parameters of different atoms, are 
calculated. Even though (36N+3) products are cal- 
culated and accumulated for every reflection, an entire 
structure-factor least-squares calculation takes only 
about twice as long as a structure-factor calculation 
alone. 

A description of the course of the calculation is given 
in the accompanying flow diagram (Table 3). The 
dashed lines indicate an optional punching of the 
accumulated products of derivatives which, when the 
summation is complete, are the coefficients of the 
normal equations. This punching may be done as often 
as desired without interfering with the course of the 
calculation; the purpose of this option is to permit 
interruption of the calculation at any time. In a short 
calculation, it is not normally needed; on the other 
hand in a calculation requiring more than about an 
hour it is a highly desirable feature, since it is frequently 
impossible to perform a lengthy calculation conti- 
nuously, because of either machine failures or schedul- 
ing difficulties. If such partial sums are accumulated 
in several groups, they are loaded into the machine 
and summed together by a special sub-routine; the 
resulting normal equations are then solved in the usual 
fashion. The exact solution of the determinants to give 
the shifts in the nine parameters for each atom re- 
quires only a few seconds per atom, including the 
punching of the resulting shifts and the revised para- 
meters. 

Another option, not specifically indicated in the 
flow diagram, permits calculation of structure factors 
for more atoms than are to be refined by least squares. 
This feature is desirable when, for example, one wishes 
to include hydrogen atoms in a structure-factor cal- 
culation for an organic crystal without refining their 
positions; it was used in the lengthiest least-squares 
calculation which we have yet performed, that  for 
dibenzylphosphoric acid (Dunitz & Rollett, 1956). 
This substance gave more than 2800 independent 
reflections and had 34 atoms in the asymmetric unit, 
of which 19 were refined by least squares; one cycle 
of refinement required between 7 and 8 hr. Actually 
this refinement was not undertaken until the structure 
had been extensively refined by other methods. Our 
more usual practice (with shorter calculations) is to 
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Load routines and 
initial input (data) 

Start over with 
first reflection 

Table 3. Flow diagram for least-squares calculations (including recycling) 
Initial input (data): Same as for structure factor calculation 

I No 

Has last reflection 
been calculated ? 

_>[ Input _ _  
l~°(hl'hg' h3) 1 

t ~ t  
I 

o 

II 

Yes~ 
Punch coefficients of 

normal equations 

]1 

Add MI shifts to previous 
parameters, punch new para- 
meters, and replace previous 

parameters by new ones 

Yes 

Perform structure-factor calculation and store 
trigonometric terms, f], and temperature factors 

needed in evaluation of derivatives 

- - - ÷ 1  Calculate weighting fac- 
tor for this reflection 

Modify atom No. -> 

T No 

Has last atom's 
contribution 

been calculated ? 

Punch structure-factor I 
calculation results 

Evaluate 9 derivatives 
for atom j 

Form and accumulate 36 products 
of derivatives for each atom 
and three general products 

Solve each 3×3 and 6×6 
determinant for shifts in 

xij and jBii, and punch shifts 

Solve for change in 
--> scale factor and punch it 

use a number  of cycles of ref inement  by  least squares 
to proceed from a t r ial  s tructure unt i l  the  re l iabi l i ty  
index (R) and  XW(AIFI) 2, which is essential ly what  
is being min imized  in the  least-squares calculation, 
have  reached or approached a m i n i m u m  value. In  our 
experience this  has required as few as three or as m a n y  
as ten  cycles, depending chiefly upon the adequacy 
of the ini t ia l  scale factor and position and temperature-  
factor parameters .  When  a ref inement  is cont inued 
unt i l  R and  the sum of the residuals approach con- 
stancy,  the  parameter  shifts indicated at tha t  stage 
are always only a smal l  fraction of the corresponding 
s tandard  deviations.  

The least-squares rout ine has been used extensively  
for both three-dimensional  and two-dimensional  re- 
f inement .  However,  i t  is less desirable for the la t ter  
because no provision is made for calculat ion of any  
cross terms between atoms, and these become im- 
por tan t  in unresolved projections. I t  would be desir- 
able to have  a rout ine which would calculate all the  
cross terms between two-dimensional  position para- 
meters for perhaps ten different atoms, with the more 
usual  t r ea tment  of an indefini te  number  of others. 
One could specify on a variable card which sort of 
projection was being refined so tha t  only a single 
routine would be needed. Such a routine would suffice 
for most projections and  would not involve much  more 
comput ing t ime t h a n  the present routine. The special 
20 x 20 mat r ix  could be inverted a n d  the shifts ob- 
ta ined in less t h a n  15 min.  

M i s c e l l a n e o u s  c a l c u l a t i o n s  

We have  found it  desirable to use SWAC for some of 
the other calculations normal ly  encountered in crystal- 
s tructure analysis  and have wri t ten short  routines for 
some of these special purposes. Each  of these routines 
has one variable card on which the significant  partic- 
ulars of the  calculation are specified, and each is 
arranged so tha t  it m a y  be punched and listed with 
the s tandard  plugboards which we have  wired for the  
punching  and tabula t ing  of the output  of our chief 
routines. The routines are consequently convenient  
and  efficient to use; three of the more useful of them 
are described here. 

Correction factors for Weissenberg intensity data 
The variables for this  routine include the wavelength 

of the  radia t ion used, the latt ice constants  of the 
crystal,  and  whether  the crystal  is triclinic, monoclinic, 
or of or thorhombic or higher symmet ry .  The routine 
generates the  indices of every plane within the positive 
octant  of the sphere of reflection and also, when the 
crystal  is trielinic or monoclinie, of the  unique reflec- 
tions with some indices negative. I t  then  calculates 
the combined Lorentz-polarizat ion factor, 1/L, and 
the correction factors, T~, for equi-inclination Weissen- 
berg photographs about  each axis (Tunell, 1939). The 
following equations are convenient  for calculating 
these quanti t ies  with a high-speed computer :  
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1 i / /  sin2 0 - s i n 4 0  } (19) 
£, -- 1 - 2  (sin ~' 0 - s i n  4 0) ' 

l / J  c°sg/z-  c°s~ 0 } ] / / ~ { 1  ( hi~ 
T'  = V , s ~  -O = ~ - \2ai ~m O/~, " 

(20) 

The second form of (20) follows from the first because 
sin # = hi2/2ai. The punched output consists of one 
card per plane, and includes the indices of the plane, 
sin 0, sin 0[2, l /L ,  and the value of T d L  for rotation 
about each of the axes. About 90 cards are produced 
per minute, which is very nearly the maximum possible 
punching speed, since the computing time is a negli- 
gible fraction of the punching time. A printed list is 
then prepared for convenience in processing the in- 
tensity data. 

lnteratomic distances and angles 
Calculation of interatomic distances and angles be- 

comes very tedious when one is dealing with large 
molecules; for example there are more than 200 bond 
angles of interest in the molecule of vitamin B12. 
A routine was therefore written for this purpose. The 
variables include the lattice constants, the number of 
atoms, the trial number, the type of parameter input 
(which may be decimal or binary, and either in frac- 
tions or sixtieths), and the type of output desired, 
either punch, direct tabulation, or both. The routine 
and the parameters of the atoms are first stored in the 
machine; calculation is then effected by the input of 
a card containing the numbers of either two or three 
atoms. If there are two numbers on the card, the 
routine calculates the distance between the atoms 
specified by those numbers and punches a card 
containing the atom numbers and the corresponding 
distance, and also the trial number for later identifica- 
tion. If there are three atom numbers on the card 
read in, the routine calculates the angle subtended by 
the first and third atoms at the second, and punches 
out the atom numbers, the angle, the distance from 
each of the extreme atoms to the apical atom, and 
the trial number. The calculation, including input and 
output,  takes only a few seconds for each distance or 
angle needed. The parameters used may be as large as 
~1-9999; consequently intermolecular distances in- 
volving neighboring unit cells may be calculated. 

Location of maxima on Fourier syntheses 

The positions of maximum density of peaks on Fourier 
syntheses in which the density is normally only sam- 
pled at discrete intervals may  be obtained reliably on 
the assumption tha t  the peaks can be represented by 
general Gaussian ellipsoids (Shoemaker et al., 1950). 
The 19 points nearest each maximum (Donohue & 
Trueblood, 1952) are used in a least-squares treatment.  
The input into the routine consists of cards containing 
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the values of the density at the 19 sampling points. 
The output  includes the position parameters of the 
maximum, the density at the maximum, and the values 
of the density calculated for each of the 19 sampling 
points from the parameters obtained by least squares 
for the Gaussian ellipsoid. Comparison of these values 
with those actually observed gives a measure of the 
adequacy of representation in this form; in general it  
is excellent. The computing time is negligible. 
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Dr C. B. Tompkins for their cooperation and assistance 
in making this work possible. We are also grateful 
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